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INTRODUCTION

Cell-to-cell communication by means of diffusible signaling
molecules allows bacteria to trigger coordinated responses to

achieve outcomes that would otherwise remain impossible for in-
dividual cells. During the past 2 decades, much attention has been
given to bacterial communication systems due to their involve-
ment in acute and chronic infections. Analyses of the molecular
mechanisms of cell-to-cell communication may help scientists to
develop specific antimicrobial agents that will decrease both the
defensive and offensive traits of pathogens. The signaling network
of Pseudomonas aeruginosa is perhaps one of the most complex
systems known and, to date, is the best studied among all micro-
organism systems. It consists of multiple interconnected signaling
layers that coordinately regulate virulence and persistence, driving
the emergence of P. aeruginosa from the enormous number of
species that comprise the biodiverse bacterial domain to join an

elite group of a few dozen that pose a major threat to humans. This
review summarizes the major signaling systems regulating viru-
lence and persistence in P. aeruginosa, with special attention to
those involving the production and detection of diffusible signal-
ing molecules. Due to the complexity and diversity of these signal-
ing networks, we define the relevance of each system with regard
to signal integration, adaption responses, and virulence, empha-
sizing the importance of less-well-studied signals as potential key
elements in the global virulence network of P. aeruginosa. (Gene
and protein numbers in this article refer to the corresponding
numbers from the P. aeruginosa PAO1 genome.)
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THE EMERGING NEED FOR NOVEL AGENTS AGAINST
P. AERUGINOSA INFECTIONS

Since its initial discovery in the late 19th century (63), the Gram-
negative bacterium P. aeruginosa has gained a notorious place in
the list of infamous human pathogens (65, 158, 206). The arrival
of the antibiotic era largely palliated the previously fatal outcome
of acute infections in healthy patients. Only a relative improve-
ment has been achieved in the eradication of chronic infections,
which develop mainly in individuals suffering from cystic fibrosis
or severe burns or who are immunocompromised (30, 74, 98).
Two intrinsically related factors in the fatal outcome of infection
in these patients are the rapid prescription of not always appro-
priate antibiotic treatments and the development or acquisition of
multidrug-resistant strains. While the use of an appropriate anti-
biotic(s) has been reported as an essential factor in the eradication
of P. aeruginosa infections (102, 122, 134), conversely, antibiotic
abuse significantly contributes to increasing resistance by exerting
a continuous selective pressure for the acquisition of such capa-
bilities. Antibiotics alone do not account for the high prevalence of
multidrug-resistant variants: P. aeruginosa has multiple, chromo-
somally encoded intrinsic mechanisms of resistance, including
low permeability of the cell envelope and numerous multidrug
efflux pumps. Another major factor accounting for the successful
invasive behavior and persistence of this bacterium is its high
adaptability, allowing rapid colonization of different environ-
ments. To perform these adaptations, P. aeruginosa has evolved a
complex and extensive array of regulatory signaling networks that
detect and react to endogenous and environmental molecules,
triggering massive changes in genetic expression.

AHLS: THE CLASSICAL GRAM-NEGATIVE SIGNALS

N-Acyl homoserine lactones (AHLs) were the first broadly ac-
cepted bacterial cell-to-cell signals to be discovered and, to date,
remain the most-studied communication molecules in bacteria
(2, 3, 59, 60, 72, 143). A large number of Gram-negative bacteria
produce and use these signals to control and regulate gene expres-
sion in a cell density-dependent manner known as quorum sens-
ing (QS) (68, 205, 208). In general, AHLs consist of fatty acids,
varying in length and substitution, linked via a peptide bond to a
homoserine lactone moiety. AHLs are commonly synthesized by
members of the LuxI family of proteins and are sensed by mem-
bers of the LuxR family of transcriptional regulators (69, 70). After
a certain concentration of AHLs (the threshold) has been pro-
duced (correlating to a certain bacterial cell density), a complex
with the cognate LuxR transcriptional regulator will be formed,
enabling binding to DNA, thereby altering the expression of mul-
tiple virulence genes. Two different AHL systems coexist in P.
aeruginosa: the Las and Rhl systems. The Las system produces and
responds to N-3-oxo-dodecanoyl homoserine lactone (3-oxo-
C12-HSL), which is produced by the LasI synthase (PA1432) and
recognized by the transcriptional regulator LasR (PA1430) (154,
156). The Las system controls the production of multiple viru-
lence factors involved in acute infection and host cell damage,
including the LasA (PA1871) and LasB (PA3724) elastases, exo-
toxin A (PA1148), and alkaline protease (PA1246) (73, 99, 154,
191). The second AHL system, the Rhl system, produces and re-
sponds to N-butanoyl homoserine lactone (C4-HSL) (157). This
molecule is generated by the RhlI synthase (PA3476) and sensed
by the transcriptional regulator RhlR (PA3477), inducing the ex-
pression of several genes, including those responsible for the pro-

duction of rhamnolipids, and repressing those responsible for as-
sembly and function of the type III secretion system (T3SS), a
major virulence determinant in human infections that allows the
release of toxic proteins into the cytoplasm of eukaryotic cells
(12). A hierarchical relationship exists between the Las and Rhl
systems: the Las system controls the Rhl system, as the 3-oxo-C12-
HSL–LasR complex directly upregulates rhlR transcription (112).
Thus, activation of the LasIR system allows the later activation of
the RhlIR system (Fig. 1). Experiments with mouse models dem-
onstrated that deletion of either AHL synthases or AHL receptors
results in a decrease in infection severity (155, 172, 183).

Further Regulation of the AHL Systems

In addition to RhlR and LasR, P. aeruginosa possesses several pu-
tative LuxR-type homologues lacking a LuxI-type cognate part-
ner; these homologues have been designated orphan LuxR homo-
logues (67). Their function and potential relationship to AHL
signaling remain unknown, with the exception of QscR (PA1898),
which exhibits full conservation with functional LuxR-type pro-
teins and forms complexes with LasR and RhlR. These delay the
expression of quorum sensing-regulated genes, thereby reducing
bacterial virulence both in vitro and in vivo (35, 115). Recently,
Chugani and Greenberg revealed an even higher level of complex-
ity in P. aeruginosa AHL signaling, reporting a set of 37 genes
whose expression was controlled by AHLs in the absence of LasR,
RhlR, and QscR (34). These recent results raise questions about
AHL quorum sensing regulation. What is the identity and mech-
anism of the protein(s) or recognition factor for these AHL sig-
nals? Are these mechanisms present in other species? Does this
system function by recognizing native AHL signals only, or does it
respond to AHLs produced by other bacteria and is thus involved
in interspecies communication?

Given this complexity, it seems obvious that AHL quorum sens-
ing must be tightly regulated to coordinate the correct time and
place of expression of virulence factors. Three regulators have
been found in P. aeruginosa that contribute to the timing and level
of control of AHL-regulated virulence. The first, RsaL (PA1431),
acts as a major transcriptional repressor of the Las system, con-
trolling the maximal levels of AHLs, and also therefore virulence
factors, produced (42). RsaL binds simultaneously with the
3-oxo-C12-HSL–LasR complex to the lasI promoter (163), inhib-
iting its transcription, while in parallel it controls the repression of
AHL-related virulence by directly binding to the promoters of
pyocyanin and hydrogen cyanide (HCN) genes (165).

Controlling the Activation Threshold

The second regulator, QteE (PA2593), was recently shown to pre-
vent the posttranslational accumulation of LasR by reducing its
stability and also blocking RhlR accumulation by an as yet un-
known LasR-independent mechanism (179). This activity inhibits
the induction of virulence phenotypes, as shown by attenuated
infection by P. aeruginosa in plant and Drosophila melanogaster
models upon overexpression of qteE (118). QslA (PA1244) pre-
vents early activation of QS-regulated virulence by forming com-
plexes with LasR that prevent its binding to the target DNA. In
contrast to QteE, QslA does not affect RhlR QS activation or LasR
stability, nor does its absence correlate with an early activation of
QS (176). These newly discovered regulators provide a logical ex-
planation for how a threshold for activation can be created in
bacteria where early activation of QS-dependent virulence is
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avoided during the initial growth phase. It remains possible, al-
though not yet proven, that QteE and/or QslA also actively re-
presses AHL-dependent gene expression during late stationary
phase to conserve energy when AHL-related virulence is no longer
needed.

Additional AHLs in P. aeruginosa

The AHL systems discussed here encompass only the two main
AHLs of P. aeruginosa (C4-HSL and 3-oxo-C12-HSL), although
low concentrations of other distinct AHLs, namely, 3-oxo-C14-
HSL and 3-oxo-C10-HSL, can be detected in the supernatants of P.
aeruginosa cultures (28). The presence of smaller quantities of
these AHLs may be due to a case of mistaken identity where the
LasI synthase couples the wrong acyl carrier protein (ACP) to
S-adenosylmethionine (SAM). However, these AHLs might also
originate from the action of a different type of AHL synthase. In
addition to the LuxI-type synthase, two other unrelated AHL syn-
thase families have been reported: the LuxM synthase family, ex-
clusive to Vibrio spp. (7, 77), and the more diverse HdtS synthase
(113), originally identified in Pseudomonas fluorescens, with puta-
tive homologues in several Pseudomonas spp., including P. aerugi-
nosa.

DKPS AND LUXR ACTIVATION

DKPs

A close examination of LuxI and LuxR homologues in all se-
quenced genomes of Gram-negative bacteria clearly reveals an
increased prevalence of LuxR- over LuxI-type proteins. Whether
this ratio reflects a predominance of eavesdroppers over speakers
or is an indication of the presence of unidentified alternative
LuxR-binding molecules remains a matter of debate. The idea of a

novel set of molecules capable of binding and activating LuxR-
type proteins was confirmed as a reality in 1999, when Holden and
coworkers purified and elucidated several structures of a novel
family of cyclic dipeptides, termed diketopiperazines (DKPs),
from the supernatants of various bacteria, including P. aeruginosa
(Fig. 2) (92). DKPs have been proven to interfere with the
quorum-sensing systems of various bacteria; this interference is
most likely by binding to the LuxR family of receptors, either
activating or antagonizing AHL signals. In the same work, the
authors identified three different DKPs in the supernatants of var-
ious bacteria: cyclo(�Ala-L-Val) and cyclo(L-Pro-L-Tyr) in P.
aeruginosa, Proteus mirabilis, and Citrobacter freundii; cyclo(�Ala-
L-Val) in Enterobacter agglomerans; and cyclo(L-Phe-L-Pro) in P.
fluorescens and Pseudomonas alcaligenes.

FIG 1 Virulence regulation of and interactions between the two AHL quorum-sensing systems in P. aeruginosa. After a threshold concentration of 3-oxo-C12-
HSL is produced, the 3-oxo-C12-HSL–LasR complex binds the promoter regions of multiple genes, activating or repressing their transcription. Among the genes
upregulated by this complex are lasI, which enhances the production of 3-oxo-C12-HSL (autoinduction effect), and rhlR, which increases the production of the
rhl response regulator RhlR, activating the second AHL pathway at an earlier stage. Virulence factors regulated by each respective receptor-ligand complex are
detailed on the left.

FIG 2 Structures of the two DKPs produced by P. aeruginosa.

Nadal Jimenez et al.

48 mmbr.asm.org Microbiology and Molecular Biology Reviews

http://mmbr.asm.org


Despite the discovery of this novel type of signaling compound
over 10 years ago, little attention has been given to DKPs. Two
possible reasons for this apparent lack of interest are that the high
concentrations of DKPs required to activate LuxR-like quorum-
sensing systems strengthen the idea of a fortuitous cross talk (91)
and the fact that no bacterium has yet been demonstrated to reg-
ulate QS solely by depending on DKPs, undermining the impor-
tance of these molecules as essential signaling compounds. How-
ever, DKPs may become the focus of more intensive research in
the coming years due to the increasing number of studies on the
additional antimicrobial properties of these compounds.

Additional Properties of DKPs

Lactobacillus plantarum produces two DKPs, namely, cyclo(L-
Phe-L-Pro), as found in P. fluorescens and P. alcaligenes, and
cyclo(L-Phe-trans-4-OH-L-Pro), and both of these have been re-
ported to display antifungal activity (189). Cyclo(L-Phe-L-Pro)
has also been detected in the supernatants of the human patho-
gens Vibrio vulnificus, Vibrio cholerae, Vibrio parahemolyticus, and
other related Vibrio spp. (151). An interesting aspect highlighted
by the authors is that while this molecule activates the Lux re-
porter system of Vibrio fischeri, in V. vulnificus and other related
species this DKP enhances the expression of the outer membrane
protein ompU gene and the cholera toxin ctxAB genes, known to
be under the control of ToxR. The presence of DKPs in V. vulni-
ficus is especially intriguing because this bacterium does not pro-
duce AHLs and therefore could use DKPs to activate orphan LuxR
regulators. On the other hand, in a recent study on the QS prop-
erties and mode of action of DKPs, Campbell and coworkers
found no evidence of LuxR-like activation or interaction by any of
the DKPs tested (24), including those previously reported by
Holden and colleagues. These controversial results cast serious
doubts on the role of DKPs as bacterial signaling molecules, and
their potential involvement in P. aeruginosa QS-regulated viru-
lence requires further research.

4-QUINOLONE SIGNALING: THE
PSEUDOMONAS-BURKHOLDERIA LANGUAGE

PQS

Despite 4-quinolones having been discovered in the 1940s (82)
and subsequently studied due to their antibacterial effects (37,
119), their signaling properties were not reported until more than
50 years later, when Pesci and coworkers identified the first signal-
ing role for a 4-quinolone in P. aeruginosa (159). This molecule,
2-heptyl-3-hydroxy-4-quinolone, termed the Pseudomonas quin-
olone signal (PQS), is synthesized from anthranilate and an
�-keto-fatty acid by the products of the pqs biosynthesis genes
pqsABCD (PA0996 to PA0999) (18, 61). These synthesize the pre-
cursor molecule 2-heptyl-4(1H)-quinolone (HHQ), which is fi-
nally converted into PQS by PqsH (PA2587). After a certain
threshold concentration of PQS in the extracellular medium is
reached, this molecule binds to its cognate receptor, PqsR (also
called MvfR [PA1003]). The resulting complex activates the ex-
pression of the pqsABCDE and phnAB (PA1001-PA1002) oper-
ons, increasing PQS and pyocyanin production (25, 46, 52). The
increase in production of PQS resulting from the PQS-PqsR com-
plex binding to the pqsA promoter region constitutes an autoin-
duction mechanism similar to that observed in AHL quorum-
sensing systems. Two additional regulators, MvaT (PA4315) and

its homologue MvaU (PA2667), are found in several Pseudomonas
spp. and may also be involved in PQS production in P. aeruginosa
(53, 197). An mvaT mutant exhibits more production of PA-IL
lectin and pyocyanin, reduced biofilm formation and swarming
motility, and increased drug resistance (53, 204). The observation
that mvaT and mvaU single mutants increase pyocyanin synthesis
while an mvaT mvaU double mutant abolishes pyocyanin and
PQS production suggests that these regulators work in different
ways to control pyocyanin production, with one involving PQS
production and the other directly controlling pyocyanin synthesis
(117). In addition to the four genes involved in PQS biosynthesis,
the pqsABCDE operon contains a fifth, pqsE (PA1000), encoding a
protein with a metallo-�-lactamase fold (62) that is not required
for PQS synthesis (71). Despite the recent elucidation of the crys-
tal structure of PqsE (215), little is known about its function and
natural substrate. PqsE is the major virulence effector in the
4-alkyl-quinolone (4-AQ) system, controlling the production of
several virulence factors, such as pyocyanin, lectin, rhamnolipids,
and HCN (52, 71), which are all implicated in toxicity and acute
infection (Fig. 3). The 4-quinolone signaling system is linked in a
hierarchical manner to the AHL signaling systems of P. aerugi-
nosa, as LasR (positively) and RhlR (negatively) control the levels
of PQS by binding to the promoter region of the PqsR regulator
(202). Additionally, PqsE alone is sufficient to regulate its viru-
lence target genes via the rhl QS system intrinsically linked to RhlR
(62). Mutations in either pqsA or pqsE significantly reduce P.
aeruginosa virulence in plant and animal infection models (46,
164).

Function of HHQ as a Signal

Although PQS is the major 4-quinolone signaling molecule pro-
duced by P. aeruginosa, approximately 50 structurally related
4-quinolones are also produced by the PqsABCD proteins. Most
of these molecules are produced in amounts too small to play a
significant role in cell-to-cell signaling. However, one of them, the
PQS precursor HHQ, has clearly been demonstrated to also act as
a cell-to-cell signal (47). HHQ can be released into the extracellu-
lar medium and subsequently taken up by neighboring cells, in
which it either is converted into PQS by PqsH or binds directly to
PqsR, in both cases activating PQS-regulated gene expression to
levels similar to those observed in response to PQS itself (with the
only exception being the phzA1-phzG1 [PA4210 to PA4216]
operon, responsible for pyocyanin biosynthesis, which is activated
by PQS but not by HHQ) (211). Although a study of P. aeruginosa
PAO1 revealed that HHQ conversion to PQS is necessary for driv-
ing the expression of the lectin gene lecA (PA2570) (51), studies
using a pqsH mutant in P. aeruginosa UCBPP-PA14 indicated that
the conversion of HHQ into PQS is unnecessary, as HHQ alone
was able to fully activate PqsR-dependent virulence expression
(211). A role of HHQ in cell-to-cell signaling is even more evident
if we take into account that only P. aeruginosa produces PQS,
while other Pseudomonas spp. and Burkholderia spp. rely on HHQ
and other methylated 4-hydroxy-2-alkylquinoline analogues for
4-quinolone signaling (50, 199).

The Additional Role of PQS

Since PQS seems to be dispensable for cell-to-cell signaling, what
is the benefit to P. aeruginosa of having an enzyme (PqsH) to
generate this molecule? Recent studies on PQS may have solved
this question, demonstrating that the presence of the additional
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hydroxyl group in PQS is essential for the binding of iron (17).
The formation of PQS-iron complexes confers iron-chelating
properties upon this molecule; however, iron-bound PQS is not
transported back into the cell and therefore does not function as a
siderophore (51). Instead, PQS is found at high concentrations in
the outer cell membrane of P. aeruginosa, within membrane ves-
icles (128, 129). The presence of iron-bound PQS at the mem-
brane may contribute to the accumulation of iron in close prox-
imity to the cell, facilitating the work of the actual siderophores
pyoverdine (PVD) and pyochelin. This mechanism would allow
the bacterium to rapidly and efficiently obtain iron without losing
siderophores in the surrounding environment (51). Additionally,

PvdS, the major regulator of pyoverdine biosynthesis, has been
proven to play a role in PQS synthesis by controlling the expres-
sion of PqsR (147), demonstrating an intrinsic relationship of
PQS production with iron levels.

THE GAC SYSTEM: CONNECTING VIRULENCE, BIOFILM
FORMATION, AND SWARMING

The Transition from Acute to Chronic Infection

In addition to the AHL and PQS systems, P. aeruginosa controls its
lifestyle (free-living and biofilm) and the production of multiple
virulence factors via two-component signal transduction systems.

FIG 3 Biosynthesis, autoinduction, and virulence regulation by 4-alkyl-quinolones in P. aeruginosa. Biosynthesis of PQS starts with the conversion (by the
PqsABCD proteins) of anthranilate (which originates from either the kynurenine pathway or the PhnAB anthranilate synthase) into HHQ, which is finally
converted into PQS by the PqsH monooxygenase. Both HHQ and PQS bind the PqsR regulator, and the complex activates the transcription of the pqsABCDE and
phnAB operons, increasing the levels of PQS (autoinduction) and pyocyanin production. Additionally, transcription of the PQS operon results in an increase in
the levels of PqsE, an enzyme of uncharacterized function that increases the levels of pyocyanin, lectin, HCN, and rhamnolipids.
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These systems act through phosphorylation cascades that induce
conformational changes in regulatory proteins, resulting in global
changes in gene expression. Over 60 two-component systems have
been found in the genome of P. aeruginosa; among them, the GAC
system (global activator of antibiotic and cyanide synthesis) is
perhaps the most interesting and best studied. Initially identified
in Pseudomonas syringae in 1992 (93), the GAC system in the ge-
nus Pseudomonas has gained special notoriety due to the rich met-
abolic pool produced by the species of this genus and its involve-
ment in microbe-host interactions. Particularly in P. aeruginosa,
one of the major features attracting researchers is the main role of
the GAC system in the transition from acute to chronic infection.
In patients suffering from cystic fibrosis, it is not the acute infec-
tion mode of P. aeruginosa that poses the major threat but the
highly resistant biofilm lifestyle that leads to recurrent infections
ending in fatal lung failure. The GAC system consists of a trans-
membrane sensor kinase, GacS (LemA [PA0928]), which upon
autophosphorylation transfers a phosphate group to its cognate
regulator, GacA (PA2586), which in turn upregulates the expres-
sion of the small regulatory RNAs RsmZ (PA3621.1) and RsmY
(PA0527.1). Binding of RsmZ and RsmY to the small RNA-
binding protein RsmA (PA0905) activates the production of genes
involved in biofilm formation and represses multiple genes in-
volved in acute virulence and motility. As a consequence, in a
mouse model of acute pneumonia, a mutation in RsmA reduced
colonization during the initial infection stages but ultimately fa-
vored chronic infection (140).

Multiple Kinases Interact with the GAC System

Two further sensor kinases, LadS (PA3974) and RetS (PA4856),
have been found to modulate gene expression via GacA. LadS (lost
adherence sensor) acts in parallel to GacS, positively controlling
the expression of the pel operon (PA3058 to PA3064), which in-
creases biofilm production, and repressing the expression of genes
involved in the T3SS (198). The third sensor kinase involved in
this pathway, RetS (regulator of exopolysaccharide and type III
secretion), controls GacA in an opposite manner to GacS and
LadS, promoting acute infection and repressing the expression of
genes associated with biofilm production. This was evidenced by a
comparison of gene expression in retS and ladS mutant strains,
which clearly demonstrated reciprocal control of the same set of
genes (198). Furthermore, tests of the effects of these additional
kinases in a mouse model of acute pneumonia revealed that unlike
its parental strain, a P. aeruginosa retS mutant was unable to es-
tablish infection (78).

Interestingly, it was found that the effects of RetS on GacA-
dependent virulence expression are not due to a phosphorylation
cascade, as expected from the protein function, but to a direct
interaction between RetS and GacS. In an elegant study, Goodman
and coworkers demonstrated that the formation of heterodimers
between RetS and GacS blocks the autophosphorylation ability of
the latter, interfering with the consequent phosphotransfer to
GacA and leading to a reduction in RsmZ expression. While RsmA
bound to RsmZ or -Y promotes the expression of genes involved
in biofilm formation, at low concentrations of RsmZ, RsmA pro-
motes the expression of genes involved in acute virulence and
represses the expression of genes involved in chronic infections
(Fig. 4) (79). The GAC system also has a control on the AHL
system via RsmA, by negatively controlling the synthesis of C4-
HSL and 3-oxo-C12-HSL and of extracellular virulence factors

controlled by AHLs (105, 160, 168). Furthermore, a recent study
published by Filloux and coworkers (137) revealed that the RetS-
dependent switch between T3SS and T6SS activities, associated
with the transition to chronic infections, is regulated via cyclic
di-GMP (c-di-GMP) signaling. This finding reveals how these two
pathways regulate a common set of phenotypes, predicting an
exciting series of studies that will ultimately aim to unravel the
exact molecular mechanism of this interaction.

Despite extensive study of the GAC system, the identities of the
signals triggering the phosphorylation response remain unknown.
Finding the activators of these sensor kinases has been a long quest
for many scientists aiming to ultimately control the behavior of
such a relevant bacterial genus. Identifying these signals could
provide physicians and biotechnologists with a molecule capable
of switching bacterial lifestyles to ease antibiotic treatment during
human infections or to control antibiotic production in beneficial
species enhancing crop protection.

PIGMENTED SIGNALS: THE COLORFUL LANGUAGE
OF PSEUDOMONAS

Pyoverdine

Signaling under low-iron conditions. PVDs are the major iron-
chelating molecules (siderophores) of P. aeruginosa (Fig. 5). The
production of pyoverdine involves the production of multiple
proteins and is therefore likely to be of considerable metabolic
burden to the bacterium, perhaps providing a positive selection
pressure for further exploitation of this molecule in other systems.
Pyoverdine has been found to initiate a signaling cascade respon-
sible for the production of several virulence factors, including exo-
toxin A (ToxA), PrpL endoprotease (PA4175), and pyoverdine
itself (111).

This signaling cascade involves iron-bound pyoverdine (Fe-
PVD), the cell surface receptor protein FpvA (PA2398), and the
anti-sigma factor FpvR (PA2388). Upon binding to iron, the Fe-
PVD–FpvA complex interacts with the periplasmic domain of
FpvR, allowing the expression of the regulators PvdS (PA2426)
and FpvI (PA2387). PvdS upregulates the production of ToxA,
PrpL, and pyoverdine, whereas expression of FpvI generates a
positive-feedback loop through increased production of the PVD
receptor FpvA (9). Recently, Shirley and Lamont characterized an
additional protein necessary for the transport and signaling cas-
cade of Fe-PVD (178). TonB1 (PA5531) is a member of a family of
proteins responsible for the energy transduction required for the
import of molecules via outer membrane proteins. Binding of
TonB1 to the TonB box present in FpvA is essential for both the
transport of Fe-PVD and the consequent signaling cascade con-
trolled by this molecule (Fig. 6). While the role of the PVD signal-
ing pathway per se has not been tested in vivo in a P. aeruginosa
infection model, iron availability and iron chelation via PVD play
important roles in infection establishment (5, 180) and the devel-
opment of chronic infections (141).

Phenazines

Phenazines are pigmented, redox-active, heterocyclic, nitrogen-
containing molecules secreted by a considerable number of
bacteria, including multiple fluorescent Pseudomonas spp.
Phenazines display a broad spectrum of (toxic) activity toward
prokaryotic and eukaryotic organisms, varying according to the
nature and position of the substituents on the heterocyclic ring
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(21, 114, 130). This toxicity confers a clear advantage to phenazine
producers by eliminating competitors and enhancing survival in
highly populated environments such as the rhizosphere (131).
Pyocyanin (5-N-methyl-1-hydroxyphenazine), the first and
most-studied member of the phenazine family, is produced only
by P. aeruginosa (Fig. 7), a specificity that has been useful in the
rapid diagnosis of this opportunistic pathogen (63, 76, 100). This
blue phenazine is one of the major virulence factors in this patho-
gen, contributing to both acute and chronic infections (123, 207),
as it suppresses lymphocyte proliferation (146), damages epithe-
lial cells as a consequence of hydroxyl radical formation (20, 207),
inactivates protease inhibitors (consequently causing tissue dam-
age by endogenous proteases) (19), and targets multiple cellular
functions (44, 101, 139, 166, 185, 196).

Pyocyanin as a terminal signal. Besides its major function as a
virulence factor and electron transfer facilitator (86), pyocyanin
also serves as a signaling molecule in P. aeruginosa, controlling a
limited set of genes, termed the PYO stimulon (48), during the
stationary growth phase. This includes genes involved in efflux
and redox processes, as well as iron acquisition genes. The efflux
pump genes mexGHI-opmD (PA4205 to PA4208) and the putative
monooxygenase gene PA2274 are among the genes most strongly

regulated by the PYO stimulon. These genes were initially identi-
fied as part of the PQS regulatory cascade and were assumed to be
controlled directly by PQS and PqsE (PA1000) (46). This assump-
tion, however, can now be attributed to the facts that PQS and
PqsE directly control phenazine biosynthesis and that pyocyanin
itself is responsible for the upregulation of these genes, pointing
once again to the complexity of the signaling networks present in
this bacterium. The mechanism behind pyocyanin-controlled up-
regulation of many genes, including mexGHI-opmD, PA2274, and
PA3718 (encoding a putative MFS transporter), has been demon-
strated to occur via the transcriptional regulator SoxR (PA2273).
The absence of sox boxes in the remaining genes of the PYO stimu-
lon indicates that additional regulatory factors in this signaling
cascade remain to be elucidated (48). Similar to the case for PVD,
the main role of PYO in an alternative pathway has limited studies
on the secondary role of these molecules in signaling.

Sox box and colony morphology. Two years after the initial
discovery of the signaling role of pyocyanin, Dietrich and cowork-
ers linked pyocyanin levels to the development of wrinkled colo-
nies, a clear morphotype taking place in the late growth phase
(49). While wild-type P. aeruginosa colonies developed a severely
wrinkled phenotype 4 days after inoculation, a phenazine-null

FIG 4 The GAC system network in P. aeruginosa controls the reversible transition from acute to chronic infections. The small regulatory protein RsmA binds
to the promoters of multiple genes, enhancing bacterial motility and activating the production of several acute virulence factors while repressing the production
of virulence factors associated with chronic infections. GacA phosphorylation via GacS stimulates the production of the small RNAs RsmZ and RsmY, which bind
to the RsmA protein, releasing the repression of virulence factors associated with chronic infections and repressing the production of acute infection-associated
factors. The sensor kinase LadS works in parallel to GacS, activating RsmZ and RsmY production, while the sensor kinase RetS acts in an opposite manner to LadS
and GacS, forming a protein-protein complex with GacS that blocks RsmY and RsmZ production.
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FIG 5 Pyoverdines produced by P. aeruginosa. Each P. aeruginosa strain produces one type of pyoverdine exclusively. The amino acids D-Tyr and L-Glu (bottom
right of each PVD) are further modified during biosynthesis to yield the final pyoverdine. D-Tyr is converted into catechol, and L-Glu into either succinyl,
succinamide, ketoglutaryl, or a free acid, and is thus represented by “-R”.
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mutant developed the same type of colonies after only 2 days. In
contrast, a wild-type strain overproducing phenazines remained
smooth throughout the 6 days of the experiment. The same results
were obtained with a soxR mutant and a mexGHI-opmD mutant,
indicating a possible role of high intracellular phenazine levels in
colony morphology regulation. The authors also demonstrated

that the Gram-positive bacterium Streptomyces coelicolor, which
contains a soxR homologue as well as genes controlled by sox
boxes, develops a similar colony morphotype and controls gene
expression in response to the presence or absence of the two pig-
mented antibiotics actinorhodin and undecylprodigiosin. These
data clearly imply that a conserved Sox-dependent transcriptional
regulatory role exists for redox-active pigments in later develop-
mental stages.

DIFFUSIBLE SIGNAL FACTORS (DSF-LIKE FACTORS): FATTY
ACIDS AS INTERKINGDOM MESSENGERS

Cross-Kingdom Signaling

Considering the enormous biological diversity present in an eco-
logical niche, it would be naïve to assume that bacterial commu-
nication is limited to intraspecies or interspecies signaling. Given
the large number of possible interactions in a microcosmos and
the high level of competition among organisms, it seems logical
that bacteria would produce or receive signals enabling commu-
nication with fungi, plants, and animals. In recent years, various
signals capable of accomplishing this function have been found.
One interesting example of an interkingdom signal interaction
was discovered between P. aeruginosa and the opportunistic fun-
gal pathogen Candida albicans. These two organisms share ecolog-
ical niches, and both produce signals capable of interfering with
the production of virulence factors by the other. Production of
3-oxo-C12-HSL by P. aeruginosa inhibits C. albicans filamenta-
tion, a crucial virulence adaptation for the development of oppor-
tunistic infections (90), while production of the fungal metabolite
farnesol reduces PQS and pyocyanin levels and swarming motility
in P. aeruginosa (39, 132). The slight structural resemblance (C12

FIG 6 PVD signaling pathway in P. aeruginosa. In the absence of Fe-PVD
(left), the signaling system is inactive. Binding of Fe-PVD to the PVD receptor
FpvA (right) initiates a signaling cascade that requires TonB1 and FpvR and
stimulates the production of FpvA, PVD, ToxA, and the PrpL protease.

FIG 7 Biosynthesis and signaling system of pyocyanin. Chorismic acid is transformed via the PhzA to -G proteins into phenazine-1-carboxylic acid, which is
subsequently converted into different phenazines by the enzymes PhzH, PhzS, and PhzM. The product of the latter is transformed by PhzS into pyocyanin (PYO).
Next to its role as a virulence factor, PYO acts as a signaling molecule activating a limited set of genes termed the PYO stimulon. A large fraction of the PYO
stimulon genes are controlled by the regulator SoxR, although the mechanism by which PYO activates SoxR, as well as the activation mechanism of SoxR-
independent genes, remains unknown.
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backbone) between the two molecules suggests that the deleteri-
ous effects could be due to a competitive inhibition of the organ-
ism’s native receptor by the foreign signal molecule. The impor-
tance of the fatty acid backbone structure of 3-oxo-C12-HSL and
farnesol gained even more relevance with the discovery of certain
long-chain fatty acids as intra-/inter- and cross-kingdom signal-
ing molecules.

DSF Signals

The first member of the DSF signal family, cis-11-methyl-2-
dodecenoic acid, was initially discovered in the plant pathogen
Xanthomonas campestris and termed diffusible signal factor (DSF)
because of its ability to cross cell membranes by passive diffusion
(6). In X. campestris, DSF controls the production of multiple
virulence factors and cyclic glucan, and additionally, it induces
biofilm dispersal (6, 57, 200); signaling occurs via a set of genes
called rpf (regulation of pathogenicity factors) genes. DSF synthe-
sis is carried out by the long-chain fatty acyl coenzyme A (CoA)
ligase RpfB and the enoyl-CoA hydratase-like enzyme RpfF (6).
The DSF network involves multiple proteins, including RpfG, a
two-component regulator containing a novel c-di-GMP hydro-
lytic domain (HD-GYP) (174), indicating that the DSF signaling
circuit is a complex regulatory system with overlapping regulatory
layers. A complete overview of DSF and c-di-GMP interactions in
X. campestris signaling is provided by excellent reviews by Dow et
al. and He and Zhang (58, 83).

Although the DSF signaling cascade has been studied exten-
sively in X. campestris, these signals are not limited to members of
the genus Xanthomonas. Various DSF-related molecules have
been found in other bacteria: DSF signaling controls motility, li-
popolysaccharide (LPS) production, and cell aggregation in
Stenotrophomonas maltophila (64) and virulence and insect trans-
mission in Xylella fastidiosa (29), and the DSF-like signal cis-2-
dodecenoic acid (BDSF) regulates multiple virulence factors and
positively controls biofilm formation in members of the Burkhold-
eria cepacia complex (Bcc) (14, 43). Similar to 3-oxo-C12-HSL,
DSF-related signals are able to disrupt C. albicans filamentation,
thus emerging as a novel class of potential antifungal agents (14).

DSF and biofilms. The DSF-like molecule cis-2-decenoic acid
was isolated from cell-free supernatants of P. aeruginosa (Fig. 8).
Similar to BDSF in B. cepacia, this signal affects biofilm formation

and, more interestingly, induces the dispersion of established P.
aeruginosa biofilms as well as biofilms from a wide range of species
(41). As yet, little is known about the synthesis and signaling net-
work of this DSF-like molecule. Given the similarity of the phe-
notypes observed in bacteria producing DSF signals and the cross-
reactivity of these signals, it is tempting to speculate that these
compounds may interact with a common substrate-binding do-
main present in RpfC homologues. In accordance with this hy-
pothesis, mixed-species biofilm experiments using S. maltophila
and P. aeruginosa revealed substantial differences in the architec-
ture of P. aeruginosa biofilms and an increase in resistance of this
bacterium toward polymyxin antibiotics in the presence of DSF
(173). Additionally, it was demonstrated that the sensor kinase
PA1396 is essential for the response to these signals. Given the
importance of this opportunistic pathogen in human infections
and the relevance of antibiotic resistance and biofilm develop-
ment, it is clear that this research into DSF-like molecules may be
only at an initial stage, with future work potentially analyzing the
efficacy of these molecules as therapeutic agents.

NUCLEOTIDE-BASED SIGNALS: THE
SECONDARY MESSENGERS

cAMP

In recent years, it has become evident that in addition to diffusible
communication signals, a large group of nucleotide-based mole-
cules plays a crucial role in controlling bacterial physiology. The
first of these signals to be identified in prokaryotes was cyclic AMP
(cAMP), reported for the bacterium Brevibacterium liquefaciens
(later reclassified as Arthrobacter nicotianae) in the early 1960s
(148). Now recognized as an extensively distributed molecule in
bacteria, cAMP is produced by adenylate cyclase enzymes and
binds and activates transcription factors from the CRP family
(cAMP regulator proteins) (80). In P. aeruginosa, synthesis of
cAMP is driven primarily by the adenylate cyclases CyaB
(PA3217) and, to a lesser extent, CyaA (PA5272) (209). cAMP
binding to the CRP-homologous regulator VfR (virulence factor
regulator [PA0652]) directly and indirectly controls the produc-
tion of multiple virulence factors, upregulating exotoxin A, type
four pili (TFP), the T3SS, and the Las QS system (1, 10) and down-
regulating flagellar gene expression (40). Modulation of cAMP
levels occurs via the Chp (chemotaxis-like chemosensory system)
gene cluster in P. aeruginosa, where PilG (PA0408), PilI (PA0410),
PilJ (PA0411), ChpA (PA0413), ChpC (PA0415), FimL (PA1822),
and FimV (PA3115) upregulate and PilH (PA0409), PilK
(PA0412), and ChpB (PA0414) downregulate cAMP levels, estab-
lishing a link between Chp and TFP (66, 96). Additionally, muta-
tions in mucA (PA0763) and consequent activation of the AlgU
(PA0762) regulon have been reported to inhibit cAMP-VfR sig-
naling (97), demonstrating that cAMP-VfR signaling constitutes a
complex signaling cascade with multiple regulatory inputs. Infec-
tion studies using a mouse model of acute pneumonia with vfr,
cyaA, and cyaB mutants revealed a dominant role of CyaB and VfR
during infection (184). In parallel to CyaA and CyaB, a third ad-
enylate cyclase with an intriguing mode of action is produced by P.
aeruginosa. Exoenzyme Y (ExoY [PA2191]) is produced by P.
aeruginosa and delivered directly via the T3SS to host cells, where
it modulates cAMP activity contributing to bacterial virulence
(38, 94, 175, 212).

FIG 8 DSF-like fatty acids controlling cell-to-cell signaling in various Gram-
negative bacteria.
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ppGpp and pppGpp

The second group of nucleotide-based molecules was discovered
in 1970 (27) and comprises the cellular alarmones ppGpp and
pppGpp. Under amino acid starvation conditions, these mole-
cules rapidly accumulate intracellularly, triggering a switch from
cell growth to survival adaptation. In P. aeruginosa, AlgQ (AlgR2
[PA5255]) positively regulates the production of the nucleoside
diphosphate kinase Ndk (PA3807), responsible for the produc-
tion of these molecules. Deletion of algQ leads to cell death at late
exponential phase, a clear consequence of the inability of this mu-
tant to adapt from exponential-phase cell growth to survival
mode. This phenotype was rescued by overexpressing AlgQ or
Ndk, confirming the role of these proteins in survival adaptation
(107).

c-di-GMP

Another nucleotide-based molecule, cyclic di-GMP (c-di-GMP),
has attracted even more attention due to its major role as a sec-
ondary signaling molecule in many species from all kingdoms. In
bacteria, c-di-GMP levels are fine-tuned by the actions of two
types of enzymes: diguanylate cyclases (DGCs) containing
GGDEF domains, responsible for c-di-GMP synthesis, and phos-
phodiesterases (PDEs) that contain EAL domains, involved in
c-di-GMP degradation (Fig. 9). Together, these enzymes control a
multitude of phenotypes in multiple organisms, including biosyn-
thesis of adhesins and exopolysaccharides, motility, long-term
survival and environmental stress adaptation, synthesis of second-

ary metabolites, regulated proteolysis and cell cycle progression,
and virulence in plant and animal pathogens.

In addition to enzymes containing single c-di-GMP domains,
several proteins contain both GGDEF and EAL domains. These
proteins are thus capable of both synthesis and degradation of
c-di-GMP, leading to the hypothesis that they act by balancing the
internal cellular levels of this molecule. Furthermore, a series of
proteins containing degenerate GGDEF domains have been found
in multiple organisms. These domains no longer generate c-di-
GMP but instead function as allosteric sites (33) or as c-di-GMP
receptors (144).

In P. aeruginosa, 39 genes have been identified as containing
either a DGC, a PDE, or both GGDEF and EAL domains (110).
One of the best-studied proteins involved in c-di-GMP formation
in this bacterium is the DGC WspR (PA3702). The product of
wspR is a response regulator linked to the wsp operon, which en-
codes a chemosensory system related to the chemotaxis pathway
of Escherichia coli (171). Mutations in wspF (PA3703), encoding a
putative methylesterase related to the chemotactic response pro-
tein CheB (177), result in high levels of c-di-GMP and biofilm
formation, while a wspF wspR double mutant restores the wild-
type phenotype. This observation led to the hypothesis that WspF
acts by phosphorylating WspR, which stimulates c-di-GMP syn-
thesis (88).

TFP are essential for twitching motility, adherence, and biofilm
formation in P. aeruginosa. One of the proteins required for TFP
formation is FimX (PA4959), a protein essential in twitching mo-

FIG 9 c-di-GMP signaling mechanism. Diguanylate cyclases and phosphodiesterases regulate the bacterial lifestyle (free-living versus biofilm) by balancing the
internal levels of c-di-GMP. Binding of c-di-GMP to its receptor targets stimulates biofilm formation, suppressing motility. In parallel, binding of GTP to its
receptors (i.e., the allosteric site of the PDE FimX) increases the c-di-GMP-degrading activity of PDE, decreasing c-di-GMP levels, suppressing biofilm formation,
and increasing motility.
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tility (95). FimX contains both an EAL domain and a degenerate
GGDEF domain (GDSIF). Biochemical and structural analyses
revealed that FimX is capable of degrading but not synthesizing
c-di-GMP. The degenerate GGDEF domain exerts an allosteric
role, binding c-di-GMP with a high affinity and thereby control-
ling FimX function (142). FimX is localized at a single cell pole
(95); mutagenesis of the EAL and GGDEF domains has demon-
strated that both are essential for directing FimX to its correct
subcellular location. Slowly but steadily, the mechanism by which
FimX controls motility in this bacterium is being elucidated (106).
Surprisingly, the major flagellar regulator in P. aeruginosa, FleQ,
has also been found to be c-di-GMP responsive, despite the ab-
sence of GGDEF, EAL, or any other known degenerate domains
(87). This recent finding demonstrates that the relatively young
c-di-GMP field is examining an extremely complex regulatory sys-
tem that has still to yield many exciting discoveries.

Furthermore, the commonly occurring linkage between the dif-
ferent signaling systems in P. aeruginosa has once again been dem-
onstrated, this time for c-di-GMP and AHLs. In recently pub-
lished work, Ueda and Wood demonstrated that the Las system
indirectly controls the levels of c-di-GMP through the tyrosine
phosphatase TpbA (PA3885). Substrate-bound LasR activates ex-
pression of tpbA, whose product in turn dephosphorylates and
inactivates the GGDEF protein TpbB (PA1120), resulting in re-
duced levels of c-di-GMP and, consequently, increases in exopo-
lysaccharide (EPS) production and biofilm and pellicle formation
and a decrease in swarming motility (192, 193).

c-di-GMP and SCV

A clinically relevant phenotype associated with c-di-GMP levels in
P. aeruginosa is the occurrence of small-colony variants (SCV), an
adaptation morphotype associated with late-stage infections in
the lungs, antibiotic resistance, hyperadherence, and high levels of
EPS production (45, 81, 161, 186, 201). SCV development has
been linked to elevated levels of c-di-GMP, indicating that some of
these morphotypes could arise from mutations enhancing the ac-
tivity of DGCs such as WspR. In a recent work, Jenal and cowork-
ers identified a novel c-di-GMP-related operon, yfiBNR (PA1119
to PA1121), involved in the regulation of c-di-GMP levels (124).
The operon encodes YfiB (an OmpA-like outer membrane lipo-
protein), YfiN (also known as TpbP, a membrane-integral DGC),
and YfiR (a small periplasmic protein). The yfiBNR genes control
the production of EPS by upregulating pel and psl (PA2231-
PA2245) expression, a common phenotype observed in SCV vari-
ants. Jenal et al. proposed a model in which YfiR represses the
activity of the DGC YfiN, reducing the levels of c-di-GMP. Con-
sistent with this model, a cystic fibrosis SCV isolate reverted to the
wild type after overexpression of yfiR, indicating that this SCV
variant arose as a consequence of a mutation in the yfi operon.
Despite its lower fitness in vitro, this mutant persisted for many
weeks in a mouse infection model, demonstrating once again the
role that SCV morphotypes play in chronic infections and their
linkage to mutations that result in elevated c-di-GMP levels.

TARGETING BACTERIAL SIGNALING

A major goal in the study of bacterial cell-to-cell communication
systems is the development of novel and efficient antimicrobial
agents capable of disrupting virulence. As the first-discovered and
most-characterized pathway, AHLs have been the main target of
this research. Multiple approaches have been applied in attempts

to develop effective AHL-quenching drugs, including research
and development of synthetic and natural AHL mimics, use of
enzymes to degrade AHLs, and, more recently, the development of
AHL antibodies capable of either sequestering or degrading AHLs.

The role of P. aeruginosa in human infections has driven most
of the research on quorum quenching toward this pathogen. One
of the first groups of natural compounds with AHL-quenching
activity to be identified was the furanones, produced by the ma-
rine alga Delisea pulchra (126), which block quorum sensing in P.
aeruginosa, among other bacteria (84). This research led to a
plethora of studies on the production of chemically synthesized
furanones with improved quorum-quenching activity (89, 127).
Reports show that some furanones are able to inhibit quorum
sensing, facilitating clearance of P. aeruginosa in a mouse model of
lung infection (210). This observation corroborates those ob-
tained from microarray experiments on the effects of furanones
on the AHL quorum-sensing regulon (85). Although their exact
mode of action remains uncharacterized, it has been suggested
that the effects of furanones are related to a reduction in LuxR
concentration (125). In addition, protein modeling studies on
LuxR receptors (109) and the LasR receptor protein (15) suggest
that furanones bind to LasR in the same position as the lactone
ring of 3-oxo-C12-HSL. Several further natural and synthetic mol-
ecules structurally similar and dissimilar to AHLs have been
reported to interfere with AHL quorum sensing by binding to
LuxR-type receptors (11, 75, 138, 167, 181, 182), indicating that
small-molecule interference with AHL QS systems is an interest-
ing field with several potential applications.

A second approach to inhibit QS-regulated virulence is the
identification and improvement of quorum-quenching enzymes
capable of disrupting bacterial communication by degrading bac-
terial signaling molecules. Three types of AHL-quenching en-
zymes have been reported to date: lactonases, acylases, and oxi-
doreductases. The first group of quorum-quenching enzymes was
initially identified in Bacillus spp. (56) and was subsequently
found in the genomes of countless bacteria and eukaryotes (26, 54,
133, 145, 153, 170, 203, 213, 216). AHL lactonases belong to either
the metallo-�-lactamase family of proteins (108, 121, 190) or the
phosphotriesterase-like family (195). Lactonolysis of the AHL
ring leads to an inactive product that no longer activates the AHL
QS system, with consequent attenuation of virulence, as observed
in various infection models (31, 55, 149, 188).

The second class of quorum-quenching enzymes, AHL acy-
lases, was discovered in Ralstonia spp. (120) and belongs to the
Ntn hydrolase superfamily (16). AHL acylases degrade the amide
bond of AHLs, releasing homoserine lactone and an acyl moiety. A
marked difference between AHL acylases and AHL lactonases lies
in their specificities toward different AHL substrates, in that acy-
lases act upon a more restricted set of AHLs. A comparison be-
tween the AHL-binding mechanisms of the Bacillus thuringiensis
AHL lactonase (108) and the AHL acylase PvdQ from P. aerugi-
nosa (13) provides an explanation for this specificity: the long
hydrophobic cavity of PvdQ acts as a major selective determinant
of substrate stability and catalysis. The in vivo virulence reduction
upon expression or addition of AHL acylases has also been proven
(120, 136, 150), demonstrating that AHL lactonases and AHL acy-
lases are interesting candidates in the development of novel anti-
microbial drugs.

Finally, oxidoreductases constitute the third and last family of
AHL-quenching enzymes found to date. The oxidoreductase of
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Rhodococcus erythropolis W2 has been reported to reduce 3-oxo-
substituted AHLs to 3-OH-substituted AHLs (194). In addition,
CYP102A1, a cytochrome P450 of Bacillus megaterium, was also
reported to act as a quorum-quenching enzyme by efficiently ox-
idizing bacterial AHLs (32). A major drawback that may have
limited attention to the study of oxidoreductases as quorum-
quenching enzymes resides in the fact that the products still ex-
hibited (markedly reduced) quorum-sensing activity.

A more recent approach to the development of novel antibac-
terial drugs targeting cell-cell communication is the production of
antibodies capable of eliciting an immune response upon detec-
tion of the bacterial signal. Binding of antibodies to signaling mol-
ecules would interfere with cell-cell communication, resulting in a
decrease of virulence. This approach was initially tested in Gram-
positive bacteria, with very promising results partially favored by
the peptidic nature of their QS signals, which aided in the devel-
opment of antibodies (4, 152, 214). In order to overcome the small
size of AHLs and to potentiate the maximal response for antibody
generation, Janda and coworkers (104) pioneered a study where
AHLs and AHL analogues were chemically conjugated to keyhole
limpet hemocyanin (KLH) or bovine serum albumin (BSA), lead-
ing to efficient production of AHL-sequestering antibodies. These
antibodies have shown very promising efficacy in protecting mice
against P. aeruginosa infections (103, 104, 135).

The potential for novel antimicrobial drugs targeting
4-quinolone-mediated signaling in P. aeruginosa is also being ex-
plored. Farnesol, a common sesquiterpene produced by many or-
ganisms, was found to inhibit PQS production in P. aeruginosa,
although the high concentrations required may hamper in vivo
applications (39). Synthetic anthranilate derivatives (23, 36, 116)
have been developed and have shown promising results in a P.
aeruginosa mouse infection model (116). In parallel, Fetzner and
coworkers reported PQS-degrading activity by conversion of PQS
to N-octanoylanthranilic acid by the dioxygenase Hod (1H-3-

hydroxy-4-oxoquinaldine 2,4-dioxygenase) of Arthrobacter ni-
troguajacolicus (162). Hod and the Pseudomonas putida homo-
logue QDO (1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase) (8)
belong to an unusual family of cofactor-independent dioxyge-
nases involved in the breakdown of N-heteroaromatic com-
pounds (187). A major drawback in the use of Hod against P.
aeruginosa infections is its sensitivity to degradation by P. aerugi-
nosa exoproteases (162), a limiting factor that may be overcome in
the following years by protease-resistant variants selected via ra-
tional or random mutagenesis.

Besides AHL and 4-AQ systems, little progress has been made
in the development of novel drugs targeting the other cell-cell
communication systems. The two main explanations for this are
that the identities of many signals remain unknown and that little
attention has been given to the less-well-studied pathways. To
provide some examples, pyoverdine-mediated signaling in P.
aeruginosa is likely to be disrupted (directly or indirectly) by the
addition of pyoverdines from different Pseudomonas spp. (22), as
well as by the action of molecules that would interfere with the
FpvA receptor or proteins that could degrade pyoverdine. In the
case of pyocyanin, finding an enzyme capable of efficient degra-
dation of this molecule not only would have consequences on the
cell-cell signaling of P. aeruginosa but also would have potential
biomedical interest due to the cytotoxic effects of pyocyanin
(169); however, such approaches have yet to be investigated fully.

CONCLUDING REMARKS

The initial discovery of AHL quorum sensing, followed by the
discovery of multiple and different bacterial signaling systems,
revolutionized our concept of the control that bacteria have on
their behavior in relation to the environment. For decades, bacte-
ria had been considered simple organisms; this early misconcep-
tion can be attributed to two main misleading observations: first,
an underestimation based on the size of these organisms, and

FIG 10 Summary of cell-to-cell signaling systems in P. aeruginosa. Dashed lines indicate that the presence of a signal activating the system has been proposed but
remains to be proven. The PVD and GAC systems use membrane-associated proteins to activate signaling in response to their respective signals.
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second, the apparent absence of communication systems. The
term “communication” has largely been associated exclusively
with the animal kingdom, whose members are able to transmit
messages using verbal or body language. Nonetheless, it now
seems obvious that ancient organisms have developed the ability
to transfer messages without having to employ sound or move-
ment. Chemistry is unequivocally the most universal cellular lan-
guage operating in all living organisms; using chemical molecules
as signals, all organisms, including bacteria, can produce and de-
tect a large variety of messages that allow individual members to
sense and react to the constantly changing environment. By doing
so, bacteria have been able to display a dual lifestyle: living as single
organisms in the absence of communal obligations and displaying
complex social interactions when part of a community. Using
chemical signals, bacteria are able to determine population den-
sity and diversity, two ecological factors crucial for their survival.

One of the best examples of bacterial adaptation is given by the
Gram-negative bacterium P. aeruginosa. Initially studied for its
implications in human infections, this bacterium soon became a
model organism with which to study bacterial signaling due to the
high complexity, large degree of adaptability, and rich metabolic
diversity that allow its survival in the most hazardous environ-
ments, as well as colonization of a large number of hosts. A key
factor in the adaptation of P. aeruginosa is the large number of
signaling proteins encoded in its genome that allow this bacterium
to react rapidly to a wide range of signals. In this review, we have
selected some of the most clinically relevant examples related to
virulence factor production and resistance to conventional anti-
biotic treatments. The master virulence signaling systems in P.
aeruginosa are the AHL systems Las and Rhl, which together con-
trol the expression of multiple virulence factors in response to cell
density. Las and Rhl belong to the Lux-type family of signaling
systems, responsible for AHL production, the most extended sig-
nals in Gram-negative bacteria. The presence of two AHL signals
(3-oxo-C12-HSL and C4-HSL) in this bacterium is particularly
intriguing. Short-chain AHLs are more common among Gram-
negative bacteria; therefore, having the Las system (3-oxo-C12-
HSL) at the top of the hierarchy may allow P. aeruginosa to make
its own message prevail over exogenous ones. Another group of
signaling molecules related to virulence factor production but en-
countered lower in the hierarchy are the 4-quinolones. These mol-
ecules are highly specific to members of the Pseudomonas and
Burkholderia families. An intriguing fact is that 4-quinolones are
strongly upregulated under low-iron conditions, connecting vir-
ulence factor production (pyocyanin) with adaptation and sur-

vival, an elegant strategy to eliminate competition when survival
depends on iron availability.

In parallel to virulence factor production, the second major
threat posed by bacterial pathogens is persistence leading to
chronic infections, which is linked intrinsically to biofilm forma-
tion. In P. aeruginosa, the two major systems controlling this tran-
sition are the GAC and c-di-GMP systems. Although extracellular
signals have not been found for these two systems, their major role
in virulence in P. aeruginosa, among other bacteria, prompted us
to add them to this review. Together, these two signaling cascades
play a major role in the switch from highly virulent (acute) to
highly persistent (chronic) phenotypes. It is likely that in a versa-
tile bacterium, parallel functions of these systems have been main-
tained to provide a complex and efficient survival mechanism
which can be fine-tuned according to environmental or endoge-
nous signals. Regardless of the importance of the above-
mentioned signaling systems due to their implications in infec-
tions, it remains crucial to maintain efforts in the search and
understanding of the complete signaling network of this pathogen
(Fig. 10). Some of the signaling systems described here may be
considered less relevant due to their limited influence on viru-
lence. However, until we unveil the full network of signals and
their corresponding pathways, regulation, and interactions with
other systems (Table 1), it is impossible to know the full extent of
their involvement in such phenotypes. Thus, each signaling sys-
tem discovered contributes through its potential as a novel target
for antimicrobial drugs. Additionally, understanding the com-
plete signaling integration network of a bacterium may prove es-
sential for determining optimal targets for drug research and dis-
covery.
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